Resit Exam - Statistics 2019/2020

Date: January 31, 2020
Time: 18.45-21.45
Place: A. Jacobshal 02
Progress code: WISTAT-07

Rules to follow:

- This is a closed book exam. Consultation of books and notes is not permitted. You can use a simple (non-programmable) calculator.
- Do not forget to write your name and student number onto each paper sheet.
- There are 5 exercises and the number of points per exercise are indicated within boxes. You can reach 90 points.
- For derivations include the relevant equation(s) and/or a short description.
- We wish you success with the completion of the exam!

START OF EXAM

1. Maximum Likelihood and Method of Moments estimator. $\mathbf{1 5}$

Suppose that X is a discrete random variable with the sample space $S=\{0,1,2,3\}$ and the following density (PDF), where $\theta \in[0,1]$ is an unknown parameter.

$$
p(x \mid \theta)= \begin{cases}2 \theta / 3 & \text { for } x=0 \\ \theta / 3 & \text { for } x=1 \\ 2(1-\theta) / 3 & \text { for } x=2 \\ (1-\theta) / 3 & \text { for } x=3\end{cases}
$$

A sample of size $n=10$ has been taken from such a distribution. The realisations are: $\left(x_{1}, \ldots, x_{10}\right)=(3,0,2,1,3,2,1,0,2,1)$.
(a) Derive the maximum likelihood (ML) estimator of θ.

If applicable, check via the 2nd derivative whether it is really a maximum. 5
(b) Derive the methods of moments (MOM) estimator of $\theta .5$
(c) Check whether the ML estimator is unbiased or asymptotically unbiased. \square
2. Method of Moments. 10

We have a sample X_{1}, \ldots, X_{n} from a Binomial distribution with unknown parameters $k \in \mathbb{N}$ and $p \in[0,1]$. Compute the Method of Moments estimators for k and p. The density (pdf) of the Binomial distribution is:

$$
f_{k, p}(x)=\binom{k}{x} \cdot p^{x} \cdot(1-p)^{k-x} \quad(x=0, \ldots, k)
$$

The expectation is $E[X]=k \cdot p$ and the variance is $\operatorname{Var}(X)=k \cdot p \cdot(1-p)$.
3. Sample from Poisson distribution. 20

Let X_{1}, X_{2}, X_{3} be a sample from a Poisson distribution with density (PDF):

$$
p(x \mid \lambda)=e^{-\lambda} \cdot \frac{\lambda^{x}}{x!} \quad\left(x \in \mathbb{N}_{0}\right)
$$

where $\lambda>0$ is an unknown parameter. The expectation is λ, the variance is λ, and $Y:=X_{1}+X_{2}+X_{3}$ has a Poisson distribution with parameter 3λ.
(a) 2 Determine a sufficient statistic for λ.
(b) 3 Compute the Fisher information $I(\lambda)$ (for a sample of size $n=1$).
(c) $2+3$ Show that the estimator $\hat{\lambda}_{\star}=\frac{X_{1}+2 X_{2}+3 X_{3}}{6}$ is unbiased and check whether $\hat{\lambda}_{\star}$ attains the Cramer-Rao bound.
(d) 5 Use your result from (a) and the Rao-Blackwell theorem to get a new unbiased estimator $\hat{\lambda}_{\diamond}$ with $\operatorname{Var}\left(\hat{\lambda}_{\diamond}\right) \leq \operatorname{Var}\left(\hat{\lambda}_{\star}\right)$. Does $\hat{\lambda}_{\diamond}$ attain the CramerRao bound?
(d) 5 Derive the uniform most powerful (UMP) test for $H_{0}: \lambda=1$ vs. $H_{1}: \lambda=3$ to the level $\alpha=0.05$. (Let $q_{\lambda, \alpha}$ denote the α quantile of a Poisson distribution with parameter λ.)

4. Sample from Rayleigh distribution. 25

Consider two independent identically Gaussian distributed random variables U and W with $U, W \sim \mathcal{N}\left(0, \sigma^{2}\right) . X:=\sqrt{U^{2}+W^{2}}$ has then a Rayleigh distribution with parameter $\sigma^{2}>0$. The density (PDF) of a Rayleigh distribution is:

$$
p\left(x \mid \sigma^{2}\right)=\frac{x}{\sigma^{2}} \cdot \exp \left\{-\frac{x^{2}}{2 \sigma^{2}}\right\} \quad(x \geq 0)
$$

Let X_{1}, \ldots, X_{n} be a sample from a Rayleigh distribution.
(a) Derive the maximum likelihood (ML) estimator $\hat{\sigma}_{M L}^{2}$ of σ^{2}.

If applicable, check via the 2nd derivative whether it is really a maximum. 5
(b) Show that the ML estimator is unbiased. 5
(c) Show that the Fisher information (for sample size $n=1$) is $I\left(\sigma^{2}\right)=\frac{1}{\sigma^{4}} .5$
(d) Check whether the ML estimator attains the Cramer Rao bound. 5
(e) Assume $n=9$ and $\hat{\sigma}_{M L}^{2}=4$. Derive an asymptotic two-sided 0.95 confidence interval for σ^{2}. (Use the asymptotic efficiency of the ML estimator.) 5

HINT 1: Recall: For a sample X_{1}, \ldots, X_{n} from a Gaussian $\mathcal{N}(0,1)$ distribution, $Y=X_{1}^{2}+\ldots+X_{n}^{2}$ has a χ_{n}^{2} distribution with $E[Y]=n$ and $\operatorname{Var}(Y)=2 n$.
HINT 2: Recall two quantiles of the $\mathcal{N}(0,1)$ distribution: $q_{0.025} \approx-2, q_{0.95} \approx 1.6$.
5. Likelihood Ratio Test Statistic. 20

Let X_{1}, \ldots, X_{n} be random sample from a distribution that depends on one parameter $\theta \in \mathbb{R}$, and assume that the support ($=$ the sample space) does not depend on θ. The density (PDF) of the distribution $f(x \mid \theta)$ is twice continuously differentiable, and $\hat{\theta}_{M L}$ denotes the maximum likelihood (ML) estimator of θ. Let θ_{0} be the true parameter.
(a) Give the second order Taylor expansion of the log-likelihood.

$$
l(\theta)=\log \left(f\left(X_{1}, \ldots, X_{N} \mid \theta\right)\right)
$$

around $\hat{\theta}_{M L}$ at the true value $l\left(\theta_{0}\right) .5$
(b) Show that

$$
-2 \log \left(\frac{L\left(\theta_{0}\right)}{\max _{\theta \in \Theta}\{L(\theta)\}}\right) \approx-\left(\hat{\theta}_{M L}-\theta_{0}\right)^{2} \cdot l^{\prime \prime}\left(\hat{\theta}_{M L}\right)
$$

where $L(\theta)=f\left(X_{1}, \ldots, X_{N} \mid \theta\right)$ denotes the likelihood. 5
(c) Show that for $n \rightarrow \infty$:

$$
\frac{1}{n} \cdot l^{\prime \prime}\left(\theta_{0}\right) \rightarrow-I\left(\theta_{0}\right)
$$

where $l^{\prime \prime}($.$) is the 2$ nd derivative of the log-likelihood, and $I($.$) is the Fisher$ information for a sample of size $n=1.10$

